The Activation of Starfish Eggs by Acids
نویسنده
چکیده
1. Exposure of unfertilized starfish eggs to dilute solutions of weak acids (fatty acids, benzoic and carbonic acids) in isotonic balanced salt solution causes complete activation with the proper durations of exposure. For each acid the rate of activation (reciprocal of optimum duration) varies with concentration and temperature; at a given temperature and within a considerable range of concentrations (e.g. 0.00075 to 0.004 M for butyric acid), this rate is approximately proportional to concentration. We may thus speak of a molecular rate of action characteristic of each acid. 2. In general the molecular rate of action increases with the dissociation constant and surface activity of the acids. In the fatty acid series (up to caproic), formic acid has the most rapid effect, acting about four times as rapidly as acetic; for the other acids the order is: acetic = propionic <== butyric < valeric < caproic. Carbonic acid acts qualitatively like the fatty acids, but its molecular rate of action is only about one-fourteenth that of acetic acid. 3. Hydrochloric and lactic acids are relatively ineffective as activating agents, apparently because of difficulty of penetration. Lactic acid is decidedly the more effective. The action of both acids is only slightly modified by dissolving in pure (isotonic NaCl and CaCl(2)) instead of in balanced salt solution. 4. The rate of action of acetic acid, in concentrations of 0.002 M to 0.004 M is increased (by 10 to 20 per cent) by adding Na-acetate (0.002 to 0.016) to the solution. The degree of acceleration is closely proportional to the estimated increase in undissociated acetic acid molecules. Activation thus appears to be an effect of the undissociated acid molecules in the external solution and not of the ions. Acetate anions and H ions acting by themselves, in concentrations much higher than those of the solutions used, have no activating effect. The indications are that the undissociated molecules penetrate rapidly, the ions slowly. Having penetrated, the molecules dissociate inside the egg, yielding the ions of the acid. 5. When the rate of activation is slow, as in 0.001 M acetic acid, the addition of Na-acetate (0,008 M to 0.016 M) has a retarding effect, referable apparently to the gradual penetration of acetate ions to the site of the activation reaction with consequent depression of dissociation. 6. An estimate of the C(H) of those solutions (of the different activating acids) which activate the egg at the same rate indicates that their H ion concentrations are approximately equal. On the assumptions that only the undissociated molecules penetrate readily, and that the conditions of dissociation are similar inside and outside the egg, this result indicates (especially when the differences in adsorption of the acids are considered) that the rate of activation is determined by the C(H) at the site of the activation reaction within the egg.
منابع مشابه
Activation by serotonin of starfish eggs expressing the rat serotonin 1c receptor.
Starfish oocytes were injected with mRNA for the serotonin 1c receptor or with rat brain poly A+ mRNA, incubated to allow expression of the membrane protein, then matured to eggs by addition of 1-methyladenine. Applying serotonin to these eggs caused cortical granule exocytosis like that occurring at fertilization. Because the serotonin 1c receptor specifically activates a G-protein, these resu...
متن کاملCalcium Release at Fertilization in Starfish Eggs Is Mediated by Phospholipase Cγ
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCgamma, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCbeta, which is activated by a G protein, we injected starfish eggs with ...
متن کاملDistinct roles for multiple Src family kinases at fertilization.
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made aga...
متن کاملp90Rsk is required for G1 phase arrest in unfertilized starfish eggs.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference rel...
متن کاملEffects of Ionomycin on Egg Activation and Early Development in Starfish
Ionomycin is a Ca(2+)-selective ionophore that is widely used to increase intracellular Ca(2+) levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 10 شماره
صفحات -
تاریخ انتشار 2003